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SUMMARY

In multidimensional positive de�nite advection transport algorithm (MPDATA) the leading error as well
as the �rst- and second-order solutions are known explicitly by design. This property is employed to
construct re�nement indicators for mesh adaptivity. Recent progress with the edge-based formulation
of MPDATA facilitates the use of the method in an unstructured-mesh environment. In particular,
the edge-based data structure allows for �ow solvers to operate on arbitrary hybrid meshes, thereby
lending itself to implementations of various mesh adaptivity techniques. A novel unstructured-mesh
nonoscillatory forward-in-time (NFT) solver for compressible Euler equations is used to illustrate the
bene�ts of adaptive remeshing as well as mesh movement and enrichment for the e�cacy of MPDATA-
based �ow solvers. Validation against benchmark test cases demonstrates robustness and accuracy of
the approach. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: mesh re�nement; nonoscillatory forward-in-time schemes; �nite volume methods;
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1. INTRODUCTION

This paper examines properties of multidimensional positive de�nite advection transport
algorithm (MPDATA) for the purpose of devising re�nement indicators for mesh adaptivity.
Adaptive techniques are a common tool used in engineering applications. In general, they
improve the solution accuracy in problems where regions of steep gradients are embed-
ded in large areas with slowly varying values of unknowns, when the steep-gradient regions
either emerge or disappear, or change shape and location. For problems with time-dependent
geometry—e.g. via movement of external=internal boundaries—mesh adaptivity may not be
an option but rather a necessary device for enabling the simulation. Two primary aspects of
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adaptivity are: (1) the mesh adaptation—a set of tools for providing the mesh with speci-
�ed spatial discretization; and (2) the re�nement indicator—a set of criteria for specifying
desired spatial discretization. For �uid �ow problems, several distinct mesh adaptation tech-
niques, and their various combinations, have been used in practice: mesh movement; mesh
enrichment (alias h-re�nement); mesh regeneration; and p-re�nement, i.e. rising the order
of interpolating polynomials [1–7]. Our recent development of the edge-based formulation
of MPDATA [8, 9] opens new possibilities for constructing MPDATA-based nonoscillatory
forward-in-time (NFT) �ow solvers on arbitrary hybrid meshes, with subsequent implemen-
tations of a variety of re�nement techniques familiar from the unstructured-mesh framework.
Technically, MPDATA [10, 11] consists of a sequence of upwind iterations, where the initial

iteration is the �rst-order-accurate upwind scheme, while the subsequent iterations are designed
to compensate for the error of the preceding step. The corrective upwind iterations use a
pseudo-velocity constructed from the leading (dissipative) truncation error of the preceding
iteration. Thus, the scheme itself, in the way it re�nes the �rst-order to the second-order
solution, may be interpreted as a form of p-re�nement. By design, at the end of every upwind
iteration the leading error of the iteration is explicitly known. This information can be readily
applied for the solution error estimation and the re�nement indicator design. Alternatively,
the knowledge of the �rst- and second-order-accurate solutions can be used in re�nement
indicators following ideas akin to Richardson extrapolation [12]. Moreover, an a posteriori
error estimation is feasible, for the sake of reducing simulation errors in speci�ed objective
functionals (e.g. drag and=or lift) in the spirit of the dual approach [13, 14].
Progress with the edge-based unstructured-mesh MPDATA formulation [9] has naturally

lead to edge-based NFT �ow solvers [15]. The NFT schemes [16, 17] for integrating �uid
equations have been widely documented in the literature for structured grids. The term (non-
oscillatory forward-in-time) ‘NFT’ was introduced in the late 1990s [18, 19] to label a class of
second-order-accurate two-time-level algorithms for �uids built on modern nonlinear advection
techniques that suppress= reduce=control numerical oscillations characteristic of higher-order
linear schemes. NFT is meant to distinguish these algorithms from classical centred-in-time-
and-space linear methods. The interested reader is referred to Reference [20] for a compre-
hensive review of NFT solvers and discussion of their options; the theoretical foundations of
the approach are brie�y explained in Reference [21]. Since NFT solvers do not depend on
the details of spatial discretization—but only assume a second-order-accurate nonoscillatory
advection scheme as a building block, e.g. MPDATA—the numerical procedure is common
to �ux-form �nite-di�erence and unstructured-mesh �nite-volume discretization.§ In general,
the NFT approach admits the Eulerian (viz. control volume wise) [20] and semi-Lagrangian
(viz. trajectory wise) [22] optional integration methods for both elastic and inelastic systems.
In this paper, we focus on an Eulerian scheme suitable for high-Mach number (elastic) �ow
applications.
Central di�erence schemes using arti�cial dissipation models are popular in aeronautical

applications for their e�ciency. Their disadvantages include a tendency to smear shocks over
several cells, and the dependence of the arti�cial dissipation on constants that have to be

§Although MPDATA is formally �nite-volume by design, for distinction we refer to earlier formulations as ‘�nite-
di�erence’, because they were derived from �nite di�erencing of �ux-form continuous PDEs of generalized
advective transport, while assuming structured grids; cf. Reference [21] in the same issue.
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calibrated for each class of problems at hand. Moreover, designing the arti�cial dissipation
on unstructured meshes, while avoiding overdi�usive solutions, is not straightforward. The
alternatives include higher-order-accurate upwind algorithms with extensions to systems of
conservation laws using �ux–vector splitting, approximate Riemann solvers, and �ux lim-
iters that minimize spurious numerical oscillations. These schemes are less e�cient as they
require more mathematical operations per node than central di�erence approaches; see Ref-
erences [23, 24] and references therein for discussions. The NFT algorithm pursued in this
paper is based on MPDATA. It evinces small implicit viscosity, and is robust throughout a
broad range of �ow regimes. Furthermore, it provides nonlinearly stable solutions without a
need for tunable parameters characteristic of explicit arti�cial viscosity schemes.
For completeness, the edge-based unstructured-mesh high-speed �ow solver for Euler equa-

tions is described in the next section. The solver’s validation is discussed in Section 3, with
some technical details addressed in Appendix. Together, Sections 2 and 3 lay the foundation
for the design and application of adaptive indicators and meshing techniques introduced and
compared to theoretical and numerical benchmark solutions in Section 4. Remarks in Section 5
conclude the paper.

2. COMPRESSIBLE FLOW EULER SOLVER

2.1. Governing equations

The NFT solution procedure presented below is particularly e�cient when the compressible
Euler equations are considered in the conservative form, modi�ed relative to that commonly
used for solution of high-speed problems on unstructured meshes. First, rather than combining
advective �uxes of momentum with the homogeneous part of stress tensor under the diver-
gence, the governing equation are separated into advection of dependent variables on the lhs,
while designating pressure gradients as sources on the rhs. Incidentally, this facilitates design-
ing implicit NFT algorithms for both elastic and inelastic systems [25]. Second, in lieu of the
standard total-speci�c-energy equation, the conservation law for the potential temperature is
employed. Since the potential temperature is invariant under adiabatic processes, it enters the
system of the Euler equations as a homogeneous advection equation with zero rhs, similarly
to the mass continuity equation. An immediate numerical bene�t of this formulation is that
updating the density and potential temperature prior to momenta, readily provides the updated
pressure, thereby facilitating second-order-accurate integrals for kinematic variables. The Euler
equations can be written as
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=0 (1a)
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where � and p denote �uid density and pressure, and the velocity components u; v; w are
equivalent, respectively, to uI = qI =� for I =1; 2; 3 in (1c). � :=�� is the density-weighted
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potential temperature, with � denoting the potential temperature de�ned as

� :=T (p=p0)−R=cp (2)

where T is the temperature, R the gas constant, and cp the speci�c heat at constant pressure.
The constant p0 in (2), is the reference (free stream) pressure.
The system of Equations (1) is supplemented with the ideal-gas law

p=�RT ≡C�� (3)

where �≡ (1− R=cp)−1.

2.2. Solution algorithm

Our second-order-accurate NFT algorithm for the governing system (1) is a special case of a
time-dependent curvilinear coordinate formulation discussed in Section 4.1 of Reference [21]
(cf. Equation (32), therein). Consequently, all three equations in (1) are viewed as

@�
@t
+∇ ·�v=F� (4)

where � denotes any of the dependent variables in (1), v≡ [u; v; w] and F� is the associated
right-hand side (≡ 0 for � and �). The resulting NFT scheme takes the form

�n+1i =Ai(�̃; vn+1=2) + 0:5�tF�|n+1i (5)

where, n and i symbolize the temporal and spatial location in a computational space, A is
shorthand for a NFT advection operator (here MPDATA), �t denotes the integration time
step, �̃ is an auxiliary dependent variable

�̃i=�ni + 0:5�tF
�|ni (6)

and vn+1=2 is an O(�t2) estimate of the velocity �eld at t + �t=2. The adopted analytical
formulation of the governing Equations (1) results in a particularly simple solution procedure:
Step 1: Evaluate advective velocity vn+1=2i by extrapolating linearly from the current n, and

the preceding n− 1 time level¶

vn+1=2i =1:5vni − 0:5vn−1i

and store afterwards vni for the future use as v
n−1
i .

Step 2: Evaluate auxiliary variables �̃i according to (6). Since the mass continuity
equation is seldom forced, and adiabatic motions are assumed, this step is only required
for momenta, i.e.

q̃Ii = q
I |ni + 0:5�tFq

I |ni ; I =1; 2; 3

where Fq
I |ni ≡ − @p=@xI |ni . Pressure gradients are not evaluated here, but are stored at the

end of the preceding time step, see Step 4 below (note this requires initialization of the
right-hand sides).

¶This requires storing an additional level of the velocity �eld; for alternate procedures consult [20] and references
therein.
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Step 3: Call MPDATA(�̃; vn+1=2), for �̃ denoting �̃≡�, �̃≡�, and q̃I for I =1; 2; 3. The
output (from the MPDATA advection routine) represents the �rst term on the rhs of (5).
Since neither (1a) nor (1b) contain rhs, the values of � and � already represent the updated
solutions at n+ 1.
Step 4: Using �n+1 updated in Step 3, compute pn+1 from (3)

pn+1i =C��|n+1i

evaluate the pressure gradient force

Fq
I |n+1i = − @p

@xI

∣∣∣∣n+1
i
; I =1; 2; 3

and store it for future use in Step 2 as Fq
I |ni .

Step 5: Update momenta according to (5), using auxiliary solutions stored after advection
calls in Step 3, and forcings evaluated in Step 4.
Step 6: Evaluate advective velocities at n+ 1 by dividing newly updated momenta by the

updated density

vI |n+1i =
qI

�

∣∣∣∣n+1
i

This completes the model algorithm (5) over �t from level n to n+ 1. For advancing the
solution from n+ 1 to n+ 2, rename variables accordingly and go back to Step 1.

2.3. Spatial discretization

The scheme summarized in the preceding section has been implemented on hybrid meshes
with unstructured edge-based data, using the median dual �nite-volume discretization (in
the spirit of Reference [26]). The median-dual discretization requires faces Sj of the dual
mesh that bound the control volume Vi containing the vertex i, to intersect the centres of
the j=1; l(i) edges connecting vertex i with its l(i) neighbours—see Figure 1 for a two-
dimensional schematic. While allowing for a mean curvature of cell faces, this approach
appears optimal for the MPDATA advection—the heart of our NFT �ow solver—because it
simpli�es the scheme without a loss of the second-order accuracy. The complete derivation
of the �nite-volume MPDATA has been presented in Reference [8]. For the reader’s conve-
nience, we only summarize the basic MPDATA, i.e. we provide essential details of the Step 3
in the model algorithm from Section 2.2:
Here, the �nite-volume advection employs surface-weighted velocity normal to the cell

face Sj, calculated using advective velocities from Step 1

v⊥j =Sj · 0:5[vn+1=2i + vn+1=2j ] (7)

where Sj ≡ Sjnj symbolizes the oriented surface element with nj denoting the normal. The
upwind �uxes normal to the cell face Sj are then computed from

F⊥
j (�̃

n; v⊥j )= [v
⊥
j ]
+�̃ni + [v

⊥
j ]

−�̃nj (8)
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jSji

Figure 1. The edge-based median-dual approach: the edge connecting vertices i and j pierces the face
Sj of the 2D computational cell surrounding vertex i.

where the nonnegative=nonpositive parts of v⊥j

[v]+ :=0:5(v+ |v|); [v]− := 0:5(v− |v|) (9)

always coincide with out�ow=in�ow from/to the ith cell. With �uxes (8), the �nite-volume
advection of �̃

�∗
i =�̃

n
i − �t

Vi

l(i)∑
j=1
F⊥
j (�̃

n; v⊥j ) (10)

results in the �rst-order-accurate sign-preserving upwind (alias donor cell) scheme.
The corrective upwind iteration employs the surface-weighted ‘antidi�usive’ pseudo-

velocity v̂⊥j at the face using the �eld value updated in (10) and v
⊥
j from (7)

v̂⊥j = |v⊥j | |�∗
j | − |�∗

i |
|�∗
j |+ |�∗

i |+ ”
− �t
2
v⊥j

(
vn+1=2 · ∇|�∗|

|�∗| +∇ · vn+1=2
)
Sj

(11)

where ” denotes a small constant, e.g. 10−10, to assure that the denominator does not vanish
whenever �∗

j =�
∗
i =0.

‖ The factor in brackets in the second term of the antidi�usive velocity
has been written symbolically for conciseness. Its evaluation involves calculation of partial
derivatives @�=@xI that can be interpreted in terms of the Gauss theorem, by representing
the derivative as the divergence of the augmented vector �eld �∇xI . Depending upon the
speci�cation of an auxiliary control volume which surrounds the edge midpoint at the face Sj,
a number of approximations can be designed of various degrees of complexity and associated
computational e�ort. Here, we take for an auxiliary control volume the sum of the control

‖In applications using the optional FCT enhancement, the antidi�usive velocity v̂⊥j is appropriately limited [9] to
assure that the solution is locally bounded by the larger (in terms of the amplitude) of �∗ and �n.
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volumes of the dual mesh surrounding vertices i and j, see Figure 1, so that(
@�
@xI

)
j
=
1
Vj

(
l(i)∑
m=1

	�
i;m
SIm +

l(j)∑
m′=1

	�
j;m′
SIm′

)
; Vj ≡Vi +Vj (12)

where, �≡ |�∗|, 	�i;m ≡ 0:5(�i+�m), and SIm denotes the I th area component of the (oriented)
surface element at the mth edge. The associated �—the denominator in the �rst term in
brackets on the rhs of (11)—is evaluated as a surface-area weighted average from the same
auxiliary control volume

�j=
1
Sj

(
l(i)∑
m=1

	�
i;m|SIm|+

l(j)∑
m′=1

	�
j;m′

|SIm′ |+ ”
)

(13a)

Sj ≡
l(i)∑
m=1

|SIm|+
l(j)∑
m′=1

|SIm′ | (13b)

Similarly, the �ow divergence appearing inside the bracket is evaluated as

(∇ · v)j= 1
Vj

(
l(i)∑
m=1
v⊥m +

l(j)∑
m′=1

v⊥m′

)
(14)

Having determined the antidi�usive pseudo-velocity, normal (to the cell face) corrective-
upwind �uxes are evaluated as in (8), but using �∗ and v̂⊥j from (10) and (11), respectively.
Updating the �eld by reusing the upwind scheme

�̃n+1i =�̃∗
i − �t

Vi

l(i)∑
j=1
F⊥
j (�̃

∗; v̂⊥j ) (15)

completes the basic MPDATA.

3. SOLVER VALIDATION

3.1. Convergence study

The overall algorithm in (5), and its particular realization in steps 1–6 of Section 2.2, warrants
fully second-order-accurate solutions �n+1i , given a second-order accurate advection scheme A
for an arbitrary time-independent �ow v, and an O(�t2) accurate estimation of the forcing
F�|n+1i . This follows the established theory of NFT schemes (cf. Reference [21] and references
therein). Formal second- and third-order asymptotic convergence rates of various MPDATA
options have been widely documented for the �nite-di�erence formulation of advection prob-
lems [11, 20, 27, 28]. Recently [9], we have shown second-order accuracy of our edge-based
MPDATA formulation (employed in this study) on unstructured median-dual meshes in the
standard L1, L2 and L∞ norms; remarkably, the second-order convergence rate held not only
on quality meshes but also on skewed meshes. Here, we estimate the asymptotic convergence
rate of the �nite-volume edge-based NFT solver for the Euler equations, using an isentropic
�ow problem inspired by Nastase and Mavriplis [29].
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Figure 2. NFT solution (pressure contours) for a compressible �ow M =0:5 past a hill, using
unstructured triangular mesh with N =280 040 elements.

We simulate a compressible, Mach number M =0:5, channel �ow past a bell-shaped hill

yh(x)= ho{1 + [(x − xo)=�]2}−3 (16a)

(familiar from theoretical studies of strati�ed orographic �ows [30]) over a �xed period of
time, long enough to reach steady state. The dimensionless amplitude and half-width are,
respectively, ho = 0:1 and �=0:5, and xo = 0 is at the centre of the bottom wall of the
[−2; 2]× [0; 2] domain. Free-slip boundary conditions are assumed at the top and bottom
walls of the channel, and the characteristic conditions are speci�ed at the in�ow and out�ow
boundaries, cf. Reference [31]. Solutions were calculated on a sequence of ten fairly regu-
lar triangular meshes. The �rst mesh, consisting of N =501 elements, was generated using
uniform background spacing of 0.182. Each subsequent mesh was generated by decreasing
the background spacing in the x and y directions by the factor

√
2, thus e�ectively doubling

the number of elements. For each subsequent mesh, the time step was reduced accordingly,
and the number of time steps increased correspondingly, to keep calculations stable and the
simulated time �xed.
We evaluate the convergence using density norms, while approximating the exact result

by the numerical solution from the �nest mesh consisting of N =280 040 elements;∗∗ see
Figure 2 for illustration. The subsequent-mesh solutions’ departures from the ‘exact’ result
are calculated after linearly interpolating the coarse-mesh results to the �nest mesh. The stan-
dard L2 and L1 norms of the solutions’ departures are normalized to re�ect the rms and the
absolute value of the truncation error per cell and the unit of time [9, 27, 28]. Table I lists the
results and shows that the error reduction, with decreasing cell size and time step, approaches
quadratic convergence as the resolution increases. For comparison, corresponding norms using
the �rst-order upwind advection scheme in lieu of MPDATA are shown in parentheses. Al-
though the second-order accuracy of NFT schemes is ensured from derivation [16, 17, 32], to
our knowledge this is the �rst explicit illustration of the second-order asymptotic convergence
for a complete NFT �uid model.

∗∗In Reference [29] the L2 entropy norm is analysed using a free stream entropy as a reference. When using system
(1), for isentropic �ows such a norm is not indicative of the truncation error, as it is always at the round-o�
error level.
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Table I. Convergence of �nite-volume MPDATA-based NFT solver for Euler equations at M =0:5.

�E L2 L1

4:47× 10−2 4:87× 10−3 (5:47× 10−3) 1:48× 10−3 (1:97× 10−3)
3:10× 10−2 3:58× 10−3 (4:18× 10−3) 1:19× 10−3 (1:73× 10−3)
2:19× 10−2 1:64× 10−3 (2:83× 10−3) 7:04× 10−4 (1:51× 10−3)
1:54× 10−2 1:01× 10−3 (2:17× 10−3) 4:36× 10−4 (1:21× 10−3)
1:07× 10−2 6:24× 10−4 (1:58× 10−3) 2:38× 10−4 (9:01× 10−4)
7:62× 10−3 3:38× 10−4 (1:19× 10−3) 1:25× 10−4 (6:90× 10−4)
5:35× 10−3 1:77× 10−4 (8:57× 10−4) 6:61× 10−5 (5:10× 10−4)
3:78× 10−3 8:50× 10−5 (6:06× 10−4) 2:92× 10−5 (3:65× 10−4)
2:67× 10−3 4:66× 10−5 (4:34× 10−4) 1:79× 10−5 (2:64× 10−4)

The �rst column lists the approximate element size �E := 1=(
√
N ). The two remaining columns provide norms

of the solutions’ departures from the estimated ‘exact’ result. The corresponding norms for the �rst-order-
accurate UPWIND-based solver are included in parentheses.

Figure 3. Computational mesh for the NACA0012 test cases; ≈ 320 points on the aerofoil.

3.2. AGARD NACA0012 aerofoil test

The performance of the NFT Euler solver has been studied in detail for transonic �ow,
AGARD test case 04 for the NACA0012 aerofoil at Mach number M =0:8 and incidence
angle �=1:25◦ [33]. We generated the triangular mesh (Figure 3) consisting of 16 101
computational points, with 323 points along the aerofoil, to benchmark our solution against the
solution 9 from the AGARD report, contributed by Schmidt and Jameson [33, pp. 6.21–6.23]
and available in digital form. The solution 9 has been obtained by a Runge–Kutta central
di�erence code with a blend of the second- and fourth-order arti�cial dissipation terms [34],
while using a 320× 64 structured mesh. In our calculations, in the far �eld placed at the
distance of 20 chords, boundary conditions are speci�ed from the free-stream values or

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1269–1293
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Figure 4. Surface pressure coe�cient for NACA0012 aerofoil, M =0:8, �=1:25◦: left, for AGARD
results; centre, for MPDATA results; right, comparison; ≈ 320 points on the aerofoil.

extrapolated from the Riemann invariants, depending on the character of �ow super- or sub-
sonic, and in�ow versus out�ow. At the aerofoil, the free-slip condition is assumed.
The left panel in Figure 4 shows the standard display of the surface pressure coe�cient Cp

obtained for the AGARD reference solution 9. The corresponding MPDATA result (with a
synchronized FCT enhancement, see Appendix) is shown in the central panel, and the overall
comparison of the two solutions is included in the right panel. The �gure demonstrates that our
MPDATA solution compares favourably with the reference result. Note that in the MPDATA
solution both the upper- and lower-surface shocks are captured with one point only, whereas in
the AGARD result the two shocks are captured with 3 and 4 points, respectively. Furthermore,
MPDATA gives much sharper pressure jump on the weaker lower-surface shock (located in
the region of higher wall curvature) that, in contrast, is heavily di�used in the AGARD result.
For the MPDATA solution, the drag and lift coe�cient are Cd = 0:0223 and Cl = 0:3513,
respectively; while in the reference AGARD solution Cd = 0:0230, and Cl = 0:3632.
In order to separate purely algorithmic issues from the discretization per se, in Figure

5, MPDATA is compared with the numerical scheme akin to that used in the structured-
mesh AGARD reference run. Our solution labelled R–K employs three stage Runge–Kutta
central-di�erence scheme and the Jameson arti�cial dissipation [34] customized for unstruc-
tured meshes. Both results in Figure 5 were obtained on the same mesh, and both codes use
the same edge-based data structure. In all aspects the R–K results are overdi�usive in compar-
ison with MPDATA. Comparing Figures 5 and 4 shows that R–K captures the weaker shock
somewhat better than the AGARD solution, however, the prediction of the stronger upper-
surface shock is worse than in AGARD. Clearly, for both shocks, the MPDATA predictions
are the most accurate among the three solutions.
There are other algorithms designed to support single-point shock waves. Because we are

unaware of published digital data generated with such schemes for the AGARD NACA0012
aerofoil test, we refer to pressure coe�cients plots with available distribution of computational
points, for further accuracy assessment.
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Figure 5. As in Figure 4 but comparing MPDATA with the R–K code on the unstructured
mesh; ≈ 320 points on the aerofoil.

First, we consider results reported for structured meshes. The result similar to the MPDATA
solution, with both strong and weaker shocks captured with one point only (Cd = 0:0225,
Cl = 0:3536), is shown in Reference [35]. It was obtained on 320× 64 structured ‘O’ mesh
using Runge–Kutta solver with Block Jacobi matrix dissipation. The Reference [36] presents
a result that also captures each shock with a single point (Cd = 0:02310, Cl = 0:3610). It
is obtained from HCUSP solver (Modi�ed Convective Upwind and Split Procedure, allowing
constant enthalpy solutions for steady �ows) using 384× 64 structured ‘C’ mesh. In Reference
[37], the solution is included for a coarser 160× 32 ‘O’ mesh with two points on the strong
shock and heavily dissipated weaker shock, like in the AGARD solution. The procedure
in Reference [37] is based on the reconstruction of upwind �uxes of a �ux splitting using
biased averaging. The reference also provides a favourable comparison of this procedure to
the third-order ENO-Roe scheme for a slowly moving one-dimensional shock problem. In
contrast, Figure 6 shows MPDATA solution for a triangular mesh with 162 points on the
aerofoil, with a single point capture of both shock waves. By comparison with the MPDATA
�ne-mesh result, the lower shock is di�used at the foot and does not capture the Zierep
singularity. Furthermore, the absolute values of Cp on both upper and lower surfaces are
somewhat lower than in the �ne-mesh result. This is particularly transparent upstream, in the
vicinity of the weaker shock.
Unstructured meshes were used to solve the NACA0012 test case in References [38, 39],

using Quasi-ENO, and the higher-order gradient reconstruction with multidimensional limiter
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Figure 6. Surface pressure coe�cient for the NACA0012 aerofoil; M =0:8, �=1:25◦. MPDATA
solution on a coarse unstructured mesh, 162 points on the aerofoil.

schemes, respectively. In Reference [38] the solution obtained using a triangular mesh with
320 points on the airfoil is compared and it is very similar to the AGARD data with two
points needed to capture the upper shock and di�used lower shock. In Reference [39] solutions
for triangular meshes equivalent to 128× 32 ‘0’ grid show between one to two points on the
upper shock and di�used lower shock. When a �ner mesh is used (with an unspeci�ed number
of nodes on the airfoil) both shocks are captured with one point only.

4. ADAPTIVITY

Notwithstanding a substantial portfolio of successful applications in various areas of computa-
tional physics, until recently [40] all documented MPDATA theory and implementations were
carried out in the �nite-di�erence framework. Development of unstructured mesh MPDATA
�ow solvers provides an opportunity for exploiting the potential of adaptive methods for
new applications as well as for geospherical �ows previously simulated with �nite-di�erence
MPDATA. In this section, we discuss a class of re�nement indicators that naturally arise
from the MPDATA approach, and demonstrate their e�cacy. Furthermore, the numerical
examples illustrate various mesh adaptive techniques incorporated in the NFT solver discussed
in Sections 2 and 3.
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4.1. Re�nement indicators

The aim of adaptivity is to optimize the required mesh size to improve the accuracy of cal-
culated results. The basic strategy is to reduce the size of the mesh locally, in regions most
adversely a�ecting the solution accuracy, while coarsening the mesh elsewhere to improve
the computational economy. For hyperbolic problems the most straightforward approach is to
adapt the mesh to physical features of the �ow, by employing indicators based on the gradient
of a selected dependent variable. However, such a procedure does not necessarily guarantee
the desired reduction of global error measures. A relatively simple alternative (formal for
steady-state problems) is to employ an error estimation based on Richardson extrapolation,
e.g. see Reference [12], where the estimation proceeds by di�erencing residuals of the solu-
tions obtained from coarse and �ne grids. Typically, the solution generated on the ‘�ne mesh’
with halved local mesh spacing compared to the coarse mesh, is designated as an ‘accurate’
solution. This strategy is easiest to implement for structured meshes, but it can be ine�ective
in regions where the �ow is discontinuous [12]. Recent e�orts in devising adaptive indicators
concentrate on an a posteriori error estimation of the user-prescribed functionals. While our
preliminary investigations indicate (see REMARKS) that the adopted form (1) of the Euler
equations is convenient for deriving an indicator based on objective functionals using dual-
ity arguments [13, 14], here we propose a more straightforward approach founded directly
on MPDATA.
In MPDATA the �rst- and second-order solutions (Equations (10) and (15), respectively) as

well as the leading error (∝ ∇v̂⊥�) are known explicitly. The analytic forms of the truncation
errors are reviewed in Reference [21], whereas a comprehensive discussion of the exact form
of the error for the edge-based formulation of MPDATA can be found in Reference [9].
Having error forms and measures available, naturally dictates re�nement indicators akin to
the Richardson extrapolation. There is no unique way to devise a practical indicator, and
the error knowledge can be utilized in various manners. For example various normalizations
and representations of the truncation error may be emphasized. Here we consider a class of
indicators valid for arbitrary meshes that takes advantage of the MPDATA property that a
more accurate solution is obtained from every subsequent upwind iteration.
The subsequent solution updates take the form common to (10) or (15), and can be written

in brief as

�pi =�
p−1
i − �t

Vi
RHSp−1; p=1; : : : ; IORD (16b)

Here p numbers upwind iterations in MPDATA, initiated with values from the previous time
step n, �0 ≡�n. At the end of the upwind iterations �IORD =�n+1. Thus, �1 is the �rst-order
accurate upwind solution. While (�t=V)RHS0 represents the integral (�rst-order accurate) of
the divergence of the convective �ux, (�t=V)RHS1 is a �rst-order approximation to the leading
truncation error of the solution integral. For p¿ 3 the term becomes a measure of, predomi-
nantly, the second-order error [11, 41]. In principle IORD can be arbitrary (see Reference [28]
for IORD↗ ∞ limit). In practice, however, IORD¿3 is rarely used as the solution improve-
ment becomes small and does not justify the additional e�ort [11, 41]. Noteworthy, for an
arbitrary p and a steady �ow problem, RHS acquires the sense of the residual error.
In order to capture the solution error measure, rather than its auxiliary component

�+0:5�tF� in (6), we set �≡� in our implementation (recall F� ≡ 0). The basic re�nement
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indicator can be de�ned for all edges associated with ith node

�pij=
|RHSp−1

i − RHSp−1
j |

Max
i=1;N

|RHSp−1
i | ; j=1; l(i) (17)

where N denotes total number of nodes. Thinking in terms of residual errors, for p=2 the
residual error is based on comparing the �rst- and second-accurate solutions, while for p=3
it is constructed from the second- and (nearly) third-order solutions [11, 41]. Therefore, it
appears that p=3 may be a better option. We �nd, however, that in practice the indicator
(17) acts similarly for either two or three upwind passes in MPDATA, capturing equally
well both strong and weak local �ow structures.†† This is consistent with observation that
the phase errors of MPDATA solutions are insensitive to p [27]. In general, however, this
does not preclude the utility of the p=3 option. Inasmuch as the p=2 indicator will tend to
respond to local extrema, p=3 focus on third-order derivatives, whereupon it may be a more
e�ective for detecting saddle points in the �ow, frequent precursors of shear instabilities. In
the following we show the re�nement indicator (17) at work.

4.2. Adaptive mesh techniques

Next, we present examples of mesh adaptivity using remeshing, mesh movement and enrich-
ment. These techniques are in general independent of the solution algorithm and are routinely
applied in unstructured mesh codes. The best choice of adaptive meshing will depend on the
problem at hand. Each of these techniques has drawbacks. Remeshing, particularly in three
dimensions, is expensive and introduces the complexities and inaccuracies in mapping of vari-
ables from one mesh to another. Mesh enrichment is constrained by the quality of the initial
mesh and becomes excessively expensive with an increasing number of points. In some cases,
this cost can be reduced by using mesh coarsening. However, an advanced point removal pro-
cedure allowing for alteration of the initial mesh may be complex, expensive, and may pose
di�culties for data structures used in a �ow solver. Although the mesh movement can be per-
formed in a simple and e�cient manner, it is well known that it can result in the adapted mesh
having very skewed cells. In general this limits the magnitude of the movement. Sometimes
a straightforward combination of any of the re�nement strategies is used to avoid a particular
problem. Apart from the system employing mesh enrichment described in Reference [40], we
are unaware of documented mesh adaptive techniques used in combination with MPDATA.
Consequently, the selection of examples that follow is intended not only as substantiation
of the postulated re�nement indicator (17), but also as an illustration of the mesh-adaptivity
strategies, potentially bene�cial for a variety of current MPDATA applications.

4.2.1. Remeshing. Throughout this paper, the advancing front [6] triangular mesh generator
is used in all applications. The adaptive strategy for steady-state problems can be outlined
as follows:

(a) generate an initial mesh, using the initial background mesh, ensuring quality su�cient
to capture characteristic features of the �ow;

††All examples with mesh adaptivity shown in the remainder of this paper were tested for both p=2 and 3.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1269–1293



MPDATA ADAPTIVITY 1283

Figure 7. Comparison of theoretical and MPDATA results for 15o wedge at M =2:5.

(b) obtain a solution;
(c) calculate values of the re�nement indicator for every edge and use them to change

spacing in the background mesh;
(d) generate new computational mesh using the updated background mesh.

For transient problems, repeat steps b–d and interpolate �ow variables to the new mesh. For
computational e�ciency perform remeshing locally.
An example of supersonic �ow over the 15o wedge using remeshing and the re�nement

indicator (17) with p=2 is presented. Figures 7 and 8 show the pressure coe�cient Cp,
an adaptive mesh, and contour plots for the solution at Mach number M =2:5. For this
problem, Cp=0:329 downstream of the shock is estimated from theoretical formulas, Section 9
in Reference [42], rounded to the nearest entry in the reference table, in Reference [42, pp.
754–757]. The corresponding computed values for all wall boundary points placed downstream
of the shock Cp ∈ [0:3334; 0:3339] are in excellent agreement. An angle � between the shock
and the horizontal can be theoretically evaluated using Equation (9.22) in Reference [42] (best
solved numerically), i.e.

tan(� − �o)
tan �

=
2+ (�− 1)M 2 sin2 �
(�+ 1)M 2 sin2 �
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Figure 8. Remeshing (left) and pressure contours MPDATA results (right) for 15o wedge at M =2:5.

Figure 9. Pressure contours MPDATA results for 15o wedge at M =5 (left) and M =15 (right).

Table II. Theoretical and MPDATA results for supersonic
�ows past 15o wedge.

Mach number � (theoretical) � (computed)

2.5 36.95 36.2
5.0 24.30 23.9
15.0 18.96 18.2

where �o is the wedge angle, �o = 15o. Figure 9 complements Figure 8 with contour plots
for further cases of Mach number M =5 and M =15. Table II shows, for all cases, a close
match between the theoretical and numerical values of �, an excellent result.
Apart from substantiating (17), this test case highlights the extent of MPDATA applicability.

It shows that MPDATA e�ectively resolves supersonic and hypersonic �ows. Other examples
presented in this paper show the e�cacy of the approach for transonic �ows. Note that
MPDATA already has a proven record of successful applications for low-speed �ows [20, 32].
Although not directly related to adaptive re�nement, for completeness, the next example of

an oscillating aerofoil demonstrates dynamic remeshing employed for an important class of
problems with changing boundaries—in this case, pitching of an aerofoil. For NACA64A010
(NASA AMES Model), the theoretical pro�le can be found in Reference [43] and
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experimental model coordinates in Reference [44]. The ordinates are tabulated in Table II
of Reference [44, p. 5]; the chord length =0:50m; and pitching is about 0.25 chord point.
The angle of incidence �(t) is de�ned by the function

�(t)= �0 + �m sin(!t)

where �0 and �m are the pitch angle and mean angle amplitude of the harmonic oscillation,
respectively. The reduced frequency of the oscillation is de�ned for aerofoils by

k=
!c
2U∞

where c is the aerofoil chord, ! is the angular frequency of the oscillation, and U∞ is the free-
stream velocity. For the chosen test case, M =0:796, k=0:2002, �0 =0o (with the pivot angle
�xed, the pitch angle is equivalent to the aerofoil’s incidence angle), and �m=1:01o. The ex-
perimental data are available in Reference [45]—computational test (CT) case no. 6, dynamic
index 55. The pivot point of the harmonic oscillation in pitch was �xed at x=c=0:248. The
nonlinear unsteady characteristics of the surface pressure are manifested in the shock move-
ment. At the maximum angle of attack a supersonic region is present on the upper surface.
As the angle of attack decreases, the �ow speed gradually decreases on the upper surface,
with a corresponding increase in pressure. At the same time the shock strength decreases. On
the lower surface the �ow speed increases, resulting in lower surface pressure and the �ow
pattern is reversed. Figure 10 shows the key result—a history of lift coe�cient Cl versus an-
gle of attack �. Comparison with experimental data is very good, and consistent with inviscid
calculations reported in References [46, 47]. In addition, in References [46, 47] only minor
improvements were shown for viscous calculations. This is no longer the case for the mo-
ment coe�cient that is sensitive to boundary layer-shock interaction, and for which inviscid
calculations are inadequate.

4.2.2. Mesh movement. There are several techniques that can be implemented for adaptive
mesh movement, cf. Reference [48] for a recent review. A simple and general procedure [49]
is based on the equidistribution principle, stating that throughout the �eld a multiplication of
adaptive indicator and the local spacing between the nodes should be constant. The relaxation
procedure applied here is to alter the position xi=(x1i ; x2i ) of the ith node at the relaxation
level k + 1 according to:

xk+1i =xki − w
(
l(i)∑
j=1
Cij(xkj − xki )

)/
l(i)∑
j=1
Cij

where Cij is an adaptive weight function between the nodes i and j, and w is the relax-
ation parameter. The weight function is taken as the adaptive indicator measure, e.g. �pij in
(17). In order to improve the quality of the moved mesh, edge swapping is performed for
distorted elements.
The method is demonstrated for a transonic �ow over RAE2822 aerofoil at M =0:75 and

angle of attack �=3. The mesh adapted using the re�nement indicator (17) with p=2 is
displayed in Figure 11, and the corresponding pressure contours are displayed in the left panel
of Figure 12. The right panel of Figure 12 shows favourable comparison with the benchmark
AGARD test case 6, solution 9 [33]. The AGARD solution was obtained with 320× 64 mesh
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Figure 10. Hysteresis of lift coe�cient as a function of the angle of attack.

points, while MPDATA solution provides very good prediction with substantially fewer points,
i.e. 7523 mesh points and 205 points on the aerofoil.

4.2.3. Mesh enrichment. For a given edge, a re�nement indicator is examined, and when its
value exceeds the prescribed tolerance then a point is added in the centre of each of two
elements associated with this edge. New edges connecting new points are generated and the
data structure is updated. For distorted elements edge swapping is performed.
For demonstration, a NACA0012 aerofoil at M =0:8 and �=1:25, described in Section 3,

is considered again. An example of adapted mesh with three levels of enrichment is shown
in Figure 13. Here, the re�nement indicator (17) with p=3 was used. Figure 14 displays
the corresponding pressure contours as well as a comparison of pressure coe�cient with
the MPDATA solution obtained on the �ne mesh analysed in Section 3. Noteworthy, both
solutions are similar, however the mesh enrichment allows for accurate prediction using only
11 915 points, in contrast to 16 101 points used in the �ne-mesh case. Moreover, the weaker
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Figure 11. Mesh movement for RAE2822 M =0:75; �=3.

Figure 12. Pressure contours for RAE2822 M =0:75; �=3 (left) and comparison of AGARD solution
and MPDATA results (right) obtained on the adapted mesh shown in Figure 11.

shock is captured with zero points present on the shock. For this case, a quality solution was
already obtained using the �rst level of enrichment (6849 points); however, the procedure
was continued to demonstrate the potential of multilevel enrichment.
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Figure 13. Enriched mesh for NACA0012 M =0:8; �=1:25.

Figure 14. Pressure contours for the enriched mesh in Figure 13 (left), and comparison of MPDATA
solutions obtained on �ne (Figure 3) and enriched mesh (Figure 13).

5. REMARKS

We discussed properties of MPDATA that reveal advantages of the scheme for constructing
re�nement indicators, and documented a novel NFT edge-based solver for compressible �ows.
In particular, we demonstrated second-order asymptotic convergence of the solver (implied by
the theory of NFT schemes) for a Mach number 0.5 �ow past a smooth obstacle, and com-
pared our MPDATA-based NFT solutions with published results for the AGARD NACA0012
aerofoil test. Further, we postulated re�nement indicators arising naturally from the MPDATA
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approach, and showed that the edge-based data structure enables the use of MPDATA in con-
junction with adaptive meshing techniques established for unstructured meshes. The present
work extends the utility of MPDATA to complex-geometry applications. The selected
numerical examples, with and without adaptive techniques, show consistently that the NFT
MPDATA edge-based Euler solver has a low-level implicit di�usion, and remains robust and
accurate for a broad range of �ow speeds. Indeed, the solutions of aeronautical problems dis-
cussed throughout the paper add another application area to the portfolio of accomplishments
of MPDATA.
A signi�cant amount of e�ort has been put into the development of schemes for hyperbolic

conservation laws over the last decades. The choice of algorithm for a particular problem will
eventually be guided by a trade-o� between accuracy and computational economy. MPDATA
is a family of schemes with many options. Here, we studied an unstructured-mesh, high-
speed �ow solver rooted in the basic second-order-accurate scheme. For unstructured meshes,
the potential of more advanced versions such as the third-order-accurate algorithm, ‘in�nite-
gauge’, synchronized FCT, and a vector form still needs to be explored. Independent of
the choice of the MPDATA scheme, there are several options available for designing NFT
solvers, including nonlinear extrapolations of advective velocities to intermediate time levels,
and alternate compensations of truncation errors due to the coupling of advection with forcings.
The present NFT Euler solver is derived for a global time step only. Its e�ciency can be
greatly improved by adopting techniques standard in engineering applications such as local
time stepping and multigrid acceleration.
The re�nement indicators discussed rely on assessment of local truncation errors, readily

available for MPDATA schemes. Nonetheless, our preliminary investigations indicate that the
form (1) of the Euler equations considered here is also convenient for deriving an objective-
functional-based indicator using duality arguments. In particular the adjoint equations will
take a similar form to the �ow Equations (1). The advection of adjoint variables can be
solved using MPDATA NFT solver with right-hand side incorporating sources derived from
an objective functional. For steady-state problems of interest to aerospace applications, when
objective functional is formulated in terms of lift or drag, only one adjoint equation—related
to Equation (1b)—need to be considered, since in the present form pressure is a unique
function of �. This approach is currently under investigation.

APPENDIX

The NFT algorithm outlined in Section 2 allows for several choices of numerical realization.
Some derive from the rules employed to approximate the e�ective trajectory integrals of the
rhs in (4) [20, 32], but most depend on the options employed in the MPDATA itself. The ba-
sic scheme summarized in Section 2.3 is sign preserving (viz. nonoscillatory near zeros) and
thus nonlinearly stable [20, 32]. When implemented in Step 3, it provides a meaningful solu-
tion without resorting to any explicit arti�cial viscosity, see solution MPDATA0 in Figure A1.
In contrast, the reference scheme R–K requires explicit arti�cial viscosity for stability. Nonethe-
less this MPDATA solution is not oscillation free. The quality of the result can be greatly
improved via the FCT enhancement (alluded to in the footnote in following Equation (11));
see solution MPDATA1 in Figure A1. In the latter case, the limiting of the antidi�usive
velocities is still uncoupled for various transported depended variables, i.e. asynchronous.
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Figure A1. Surface pressure coe�cient for the NACA0012 aerofoil; M =0:8, �=1:25o. A comparison
of the basic (MPDATA0) and FCT-enhanced (MPDATA1) schemes.

Figure A2. Surface pressure coe�cient for the NACA0012 aerofoil; M =0:8, �=1:25o. A comparison
of synchronized (MPDATA) and asynchronous (MPDATA1) FCT-enhanced schemes.

As a consequence, the solution MPDATA1 still evinces weak oscillations in the vicinity of
steep gradients; e.g. note a spike in the pressure coe�cient upstream of the upper-surface
shock.
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The concept of synchronized limiting has a long tradition in the literature [50, 51], including
MPDATA itself [52, 53]. To assess the potential of the approach, we extended the standard
(i.e. asynchronous) FCT enhancement by adopting the classical idea of the pressure-curvature-
dependent switch, common in arti�cial dissipation models [34, 54]. The MPDATA structure is
particularly convenient for controlling arti�cial viscosity without the necessity of constructing
dissipative operators. Multiplying the antidi�usive �uxes on the rhs of Equation (15) by a
switch S=1−max(0;min(1; s)), where s∼p−1|@2p=@n2|, assures full antidi�usive correction
in regions of low-pressure gradient, while coupling the di�usion of all transported �elds in
the vicinity of a shock. The impact of such a shock-capturing enhancement is illustrated in
Figure A2. The solution labelled MPDATA is virtually oscillation free.
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